Share Page:

Volume 15 , Issue 2
March/April 2000

Pages 219230

Cleaning and Heat-Treatment Effects on Unalloyed Titanium Implant Surfaces

Deepak V. Kilpadi, Jack E. Lemons, PhD

PMID: 10795454

This study tested the following hypotheses: (1) acid-cleaned and passivated unalloyed titanium implants have higher surface energies (which are considered desirable for bone implants) than ethanol-cleaned titanium; (2) higher temperatures of heat treatment of unalloyed titanium result in higher surface energies; and (3) these changes can be related to changes in surface composition and roughness. Thus, unalloyed titanium specimens were either acid-cleaned and passivated (CP) or ethanol-cleaned (Et). Each set was then divided into 3 groups and heat-treated for 1 hour at 316C (600F), 427C (800F), and 538C (1,000F), respectively. Surface roughness values for each of these groups were determined using atomic force microscopy, while surface compositions were determined using Auger electron, x-ray photoelectron, and Raman spectroscopic techniques. Surface energies were estimated using a 2-liquid geometric mean technique and correlated with surface roughness, elemental composition, and elemental thickness. The CP surfaces were slightly rougher than the Et specimens, which had greater oxide thickness and hydrocarbon presence. The surface oxides were composed of TiO2, Ti2O3, and possibly titanium peroxide; those heat-treated at 427C or above were crystalline. The CP specimens had carbonaceous coverage that was of a different composition from that on Et specimens. The CP specimens had significantly higher surface energies, which showed statistically significant correlations with oxide thickness and carbonaceous presence. In conclusion, ethanol cleaning of unalloyed titanium dental implants may not provide optimal surface properties when compared to cleaning with phosphoric acid followed by nitric acid passivation. (INT J ORAL MAXILLOFAC IMPLANTS 2000;15:219230) Key words: ethanol, passivation, surface characterization, temperature, titanium

Full Text PDF File | Order Article


Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.


© 2022 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Author Guidelines
Accepted Manuscripts
Submission Form
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us