Share Page:

Volume 21 , Issue 6
November/December 2006

Pages 879889

Threaded Versus Porous-Surfaced Implants as Anchorage Units for Orthodontic Treatment: Three-dimensional Finite Element Analysis of Peri-implant Bone Tissue Stresses

Robert M. Pilliar, BSc, PhD / Genadijs Sagals, MSc, PhD / Shaker A. Meguid, BSc, MSc, PhD / Rodrigo Oyonarte, DDS, MSc-Ortho / Douglas A. Deporter, DDS, PhD

PMID: 17190297

Purpose: A 3-dimensional finite element model was developed to investigate the cause of different crestal bone loss patterns observed around sintered porous-surfaced and machined (turned) threaded dental implants used for orthodontic anchorage in a previously reported animal study. Materials and Methods: Twenty-noded structural solid elements with parabolic interpolation between nodes were used for modeling the bone-implant interface zone. A 3-N traction force acting between either 2 porous-surfaced or 2 machined threaded implants placed in canine premolar mandibular sites and bone profiles observed at initiation and 22 weeks of orthodontic loading were modeled. Results: Higher maximum stresses in peri-implant bone next to the coronal region of the implants were predicted with the machined threaded implants at both the initial and final time points, with the values 20% greater than those predicted after the 22-week loading period. These values were approximately 200% greater than those predicted for the porous-surfaced implants, for which a more uniform stress distribution was predicted. Discussion: The finite element model results indicated that the observed greater retention of crestal bone next to the porous-surfaced implants was attributable to lower peak stresses developing in crestal peri-implant bone with this design, which decreased the probability of bone loss related to local overstressing and bone microfracture. Conclusion: The predicted lower stresses were a result of the more uniform transfer of force from implant to bone with the porous-surfaced implants, which was a consequence of the interlocking of bone and implant possible with this design. Int J Oral Maxillofac Implants 2006;21:879889

Full Text PDF File | Order Article


Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.


© 2020 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Author Guidelines
Accepted Manuscripts
Submission Form
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us