Share Page:

Volume 36 , Issue 4
July/August 2021

Pages e63–e71

Biomechanical Analysis of Functionally Graded Root Analog Implants on Alveolar Bone: A 3D Finite Element Study

Feilong Wang, MDS/Zhaoliang Jiang, DE/Pengchao Si, DSc/Jing Lan, DDS

PMID: 34411208
DOI: 10.11607/jomi.8570

Purpose: This study aimed to investigate whether axial or radial functionally graded root analog implants can optimize the stress and strain distribution near the implant-bone interface in alveolar bone models under static loads using finite element analysis (FEA). Materials and Methods: The 3D profile of the root analog implant was captured from a natural tooth in CBCT data. The implant was separated into different layers (3, 5, and 10 layers) to vary the Young modulus axially or radially. The variation in Young modulus was designed to be linear, exponential, or parabolic. Different occlusal loads were applied. The von Mises stress and strain were used to evaluate the system risk of failure. Results: The difference in the numbers of layers had no significant effect on the alveolar bone. In the radial functionally graded implant models, the maximum von Mises stress of the alveolar bone decreased as the outer layer’s elastic modulus increased; however, in the vertical functionally graded implants, this stress varied little. The maximum von Mises stress of the cancellous bone changed only slightly, from 2 to 5 MPa in all models. The maximum strain of the alveolar bone varied from 0.001478 mm to 0.003999 mm. Those FEA results were in line with previous findings. Conclusion: The functionally graded root analog implants show no significant biomechanical advantages over dense zirconia implants. Radial functionally graded root analog implants should optimize the peri-implant stresses and are biomechanically favorable for design.

Full Text PDF File | Order Article


Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.


© 2022 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Author Guidelines
Accepted Manuscripts
Submission Form
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us