LOGIN
 
Share Page:
Back

Volume 34 , Issue 6
November/December 2019

Pages 14041412


Bone Formation of Titanium Implant Surfaces Treated with Submicron Poly(lactide-co-glycolide)/Recombinant Human Transforming Growth Factor-𝛃2 Particles by the Electrospray Method: An In Vivo Study

Joohyung Kim, DDS, MMSc, PhD/Seong-Kyun Kim, DDS, MSD, PhD/Seong-Joo Heo, DDS, MSD, PhD/Jai-Young Koak, DDS, MSD, PhD


PMID: 31711082
DOI: 10.11607/jomi.7296

Purpose: This study evaluated the effect of anodized titanium implants coated with submicron-sized poly(lactide-co-glycolide) (PLGA)/recombinant human transforming growth factor-β2 (rhTGF-β2) particles via electrospray on osseointegration in an in vivo model. Materials and Methods: An experimental group of anodized titanium implants coated with submicron PLGA/rhTGF-β2 particles by electrospray was compared topographically and histomorphometrically to noncoated anodized implants. Forty-eight anodized titanium implants were inserted into the tibias of 12 New Zealand rabbits. The histomorphometric specimens were prepared after sacrificing at 3 and 6 weeks after implant placement. Bone-to-implant contact percentage (BIC%) and bone area percentage (BA%) were calculated. The surface roughness and histomorphometric values were statistically analyzed, with a P value < .05 defined as statistically significant. Results: The implant surfaces showed a uniform submicron-sized coating of PLGA/rhTGF-β2 particles. There was no significant difference in surface roughness between the groups. Both BIC% and BA% of the three best consecutive threads in the experimental group (3 weeks postplacement) were significantly higher than those of the control group (P = .045 and P = .048, respectively), whereas only the BIC% of the three best consecutive threads of the experimental group (6 weeks postplacement) was higher than that of the control group (P = .033). None of the groups tested showed any statistically significant differences in these metrics along the total length of the implant. Conclusion: Within the limitations of this study, coating rhTGF-β2 on implants with the help of PLGA carriers by electrospray may have enhanced osseointegration during the early stage of implant healing period in in-vivo rabbit tibia model.


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2020 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Accepted Manuscripts
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help