LOGIN
 
Share Page:
Back

Volume 34 , Issue 5
September/October 2019

Pages 11321142


Evaluation of a Newly Designed Microperforated Titanium Membrane with Beta-Tricalcium Phosphate for Guided Bone Regeneration in Dog Mandibles

Hiroshi Hasegawa, DDS, PhD/Tetsuharu Kaneko, DDS, PhD/Chihiro Kanno, DDS, PhD/Manabu Endo, DDS, PhD/Tetsuo Akimoto, DDS/Morio Yamazaki, DDS, PhD/Takehiro Kitabatake, DDS/Seiichiro Masui, PhD/Hiroshi Ishihata, DDS, PhD/Kenji Izumi, DDS, PhD


PMID: 31528864
DOI: 10.11607/jomi.6776

Purpose: This study evaluated the efficacy of newly designed, laser-perforated pure titanium membranes for guided bone regeneration using beta-tricalcium phosphate (β-TCP), and compared them with the existing membrane. Materials and Methods: Bilateral acute lateral ridge defects were created in the mandibles of 12 dogs (four defects per animal), which were then randomly divided into two groups (six dogs each). The twenty-four bone defects in each group were then further divided into five groups. The groups were as follows: (1) F001M0, a prototype membrane without a frame plus β-TCP (n = 5); (2) F001M1, a prototype membrane with a frame plus β-TCP (n = 5); (3) FBS, an existing control membrane plus β-TCP (n = 5); (4) control 1, β-TCP without membrane and with covering flap only (n = 5); and (5) control 2, no treatment (no β-TCP and no membrane) (n = 4). In all groups where β-TCP was used, it was mixed with peripheral blood. The animals were necropsied at 6 or 12 weeks postoperatively (six dogs each), and samples were collected and processed for radiographic, histologic, and histomorphometric analyses. Results: Among the three membrane groups, regenerated tissue and bone volume was greatest in the F001M1 group at both 6 and 12 weeks postoperatively, although differences among groups were not statistically significant. Bone mineral density was similar among the membrane groups. Histologic analysis revealed that immature fibroblasts were present on the laser-perforated portion at 6 weeks, which induced vascularization. In addition, more calcified bone was replaced beneath the prototypes than beneath the FBS membrane at 12 weeks. Histomorphometric analyses revealed that the calcific osseous areas at 12 weeks after surgery were significantly greater in the F001M1 and F001M0 groups than in the FBS group (P = .021, P = .032). Furthermore, the fibrous tissue areas beneath the membrane at 12 weeks postoperatively were significantly smaller in the prototype groups than in the FBS group (P = .02, P = .02). Conclusion: The efficacies of both prototype membranes were not inferior to that of the FBS membrane, indicating that they may facilitate bone regeneration and maturation when β-TCP mixed with autologous blood is employed.


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2020 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Accepted Manuscripts
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help