Share Page:

Volume 32 , Issue 5
September/October 2017

Pages 10331038

Molecular Activity and Osseointegration After Single-Dose Irradiation: An In Vivo Study

Jan Nyberg, DDS, PhD/Gisela Helenius, PhD/Christer Dahlin, DDS, PhD/Carina B. Johansson, PhD/Omar Omar, BDS, PhD

PMID: 28518186
DOI: 10.11607/jomi.5426

Purpose: Irradiation results in deleterious effects on bone healing and integration of titanium implants. The impact of irradiation on osseointegration has been demonstrated in histologic studies, but the underlying molecular mechanisms have not been explored. This study aimed to investigate the effects of single-dose irradiation on the expression of biologic mediators crucial for inflammation, bone formation, and bone remodeling and to relate these molecular activities to implant stability after a 5-week healing period. Materials and Methods: A rat tibia model was used. An external single-dose irradiation of 20 Gy was administered to one leg while the second leg was used as a control. After 8 weeks, the irradiated and non-irradiated tibiae received titanium implants. Five weeks following implantation, implant stability was evaluated by removal torque measurement. Then, the implant and the bone surrounding the implant were retrieved for gene expression analysis of the implant-adherent cells and peri-implant bone, respectively. Results: Irradiation resulted in 55% reduction in removal torque. The implant-adherent cells in irradiated sites revealed downregulation of genes related to bone formation (ALP and OC) and upregulation of proinflammatory (TNF-α) and pro-fibrogenic (PDGF-b) genes. Conversely, the peri-implant bone in irradiated sites revealed upregulation of bone formation and bone remodeling genes. Removal torque showed a negative correlation with pro-inflammatory activity and a positive correlation with osteoblastic activity in the implant-adherent cells. Conclusion: The impact of high (20 Gy) single-dose irradiation on osseointegration involves a reduction in bone formation activity and upregulation of pro-inflammatory and pro-fibrogenic activities in the implant-adherent cells. It is also suggested that this single-dose irradiation elicits a different molecular pattern at a distance from the implant surface, characterized by increased bone formation and remodeling activities in the peri-implant bone.

Full Text PDF File | Order Article


Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.


© 2017 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Author Guidelines
Accepted Manuscripts
Submission Form
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us