Home Subscription Services
 
   

 
The International Journal of Oral & Maxillofacial Implants
OCTE Home Page
About the Editor
Editorial Board
Submit
Author Guidelines
Submission Form
Reprints / Articles
Permissions
Advertising
MEDLINE Search
 
 
 
 
 
FacebookTwitter
Quintessence Publishing: Journals: OCTE

 

Oral & Craniofacial Tissue Engineering

Edited by Ole T. Jensen, DDS, MS

Official Journal of the Tissue Engineering Society, the Chinese Society of Oral Biomedicine, and the Japanese Society of Regenerative Medicine

ISSN (print) 2158-3722 • ISSN (online) 2158-3706

Publication:
Oral & Craniofacial Tissue Engineering
Winter 2012
Volume 2 , Issue 4

Back
Share Abstract:

Translational Research: The CD34+ Cell Is Crucial for Large-Volume Bone Regeneration from the Milieu of Bone Marrow Progenitor Cells in Craniomandibular Reconstruction

Robert E. Marx, DDS/David B. Harrell, PhD, OF, FRIPH

Pages: 263-271
DOI: 10.11607/octe.0059

Purpose: This study investigated the role of the bone marrow–derived CD34+ cell in a milieu of osteoprogenitor cells, bone marrow plasma cell adhesion molecules, recombinant human bone morphogenetic protein (rhBMP), and a matrix of crushed cancellous allogeneic bone in the clinical regeneration of functionally useful bone in craniomandibular reconstructions. The history and current concepts of bone marrow hematopoietic stem cells and mesenchymal stem cells are reviewed as they relate to bone regeneration in large continuity defects of the mandible. Materials and Methods: Patients with 6- to 8-cm continuity defects of the mandible with retained proximal and distal segments were randomized into two groups. Group A received an in situ tissue-engineered graft containing 54 ± 38 CD34+ cells/mL along with 54 ± 38 CD44+, CD90+, and CD105+ cells/mL together with rhBMP-2 in an absorbable collagen sponge (1 mg/cm of defect) and crushed cancellous allogeneic bone. Group B received the same graft, except the CD34+ cell concentration was 1,012 ± 752 cells/mL. The results were analyzed clinically, radiographic bone density was measured in Hounsfield units (HU), and specimens were analyzed histomorphometrically. Results: Forty patients participated (22 men and 12 women; mean age, 57 years). Eight of 20 group A patients (40%) achieved the primary endpoint of mature bone regeneration, whereas all 20 group B patients (100%) achieved the primary endpoint. CD34+ cell counts above 200/mL were associated with achievement of the primary endpoint. Bone density was lower in group A (424 ± 115 HU) than in group B (731 ± 98 HU). Group A bone showed a mean trabecular bone area of 36% ± 10%, versus 67% ± 13% for group B. Conclusions: The CD34+ cell functions as a central signaling cell to mesenchymal stem cells and osteoprogenitor cells in bone regeneration. The mechanism of bone marrow–supported grafts requires a complete milieu to regenerate large quantities of functionally useful bone. CD34+ cell counts in a concentration of at least 200/mL in composite grafts are directly correlated to clinically successful bone regeneration. Oral Craniofac Tissue Eng 2012;2:263–271. doi: 10.11607/octe.0059

Key words: bone regeneration, hematopoietic stem cells, mesenchymal stem cells, recombinant human bone morphogenetic protein

Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.
  © 2020 Quintessence Publishing Co Inc
 

Home | Subscription Services | Books | Journals | Multimedia | Events | Blog
Terms of Use | Privacy Policy | About Us | Contact Us | Advertising | Help | Sitemap | Catalog