Home Subscription Services

The Journal of Adhesive Dentistry
JAD Home Page
About the Editor
Editorial Board
Author Guidelines
Submission Form
Reprints / Articles
Quintessence Publishing: Journals: JAD


The Journal of Adhesive Dentistry

Edited by Prof. Dr. Roland Frankenberger, Prof. Bart Van Meerbeek

ISSN (print) 1461-5185 • ISSN (online) 1757-9988


September/October 2021
Volume 23 , Issue 5

Pages: 461–467
Share Abstract:

Eight-year Microtensile Bond Strength to Dentin and Interfacial Nanomechanical Properties of a One-step Adhesive

Keiichi Hosaka / Antonin Tichy / Daisuke Araoka / Wurihan / Yo Shibata / Masaomi Ikeda / Celso Afonso Klein Jr / Junji Tagami / Masatoshi Nakajima

Purpose: To evaluate the microtensile bond strength (µTBS) of a one-step self-etch adhesive (1-SEA) to dentin and its interfacial nanomechanical properties after 8 years of water storage. Materials and Methods: Flat coronal dentin surfaces of extracted human third molars were bonded with a 1-SEA (Clearfil S3 Bond Plus, CS3+) and built up with a hybrid resin composite (Clearfil AP-X). After storage in water for 24 h or 8 years, non-trimmed stick-shaped specimens were fabricated from the central part of each bonded tooth and subjected to the µTBS test at a crosshead speed of 1.0 mm/min. Failure modes and the morphology of debonded interfaces were analyzed using a scanning electron microscope (SEM). In addition, the elastic modulus (E) and hardness (H) of the adhesive layer and the resin composite were determined by an instrumented nanoindentation test. The acquired µTBS, E, and H data were statistically analyzed using t-tests to examine the effect of storage time (α = 0.05). Results: The 8-year µTBS was slightly lower than that after 24 h, but the difference was not significant (p = 0.123). The SEM observation of debonded surfaces after 8 years revealed extrusions and lacunas. E and H of the adhesive layer and the resin composite significantly decreased over the 8-year water storage (p < 0.001). Conclusions: Although 8 years of water storage did not decrease the µTBS of CS3+ significantly, the observed failure mode patterns and significantly decreased nanomechanical properties indicated resin degradation of the adhesive and the resin composite.

Full Text PDF File | Order Article


  © 2021 Quintessence Publishing Co Inc

Home | Subscription Services | Books | Journals | Multimedia | Events | Blog
Terms of Use | Privacy Policy | About Us | Contact Us | Advertising | Help | Sitemap | Catalog