Home Subscription Services
 
   

 
The Journal of Adhesive Dentistry
JAD Home Page
About the Editor
Editorial Board
Submit
Author Guidelines
Submission Form
Reprints / Articles
Permissions
Advertising
Advertising
MEDLINE Search
 
 
 
 
 
FacebookTwitter
Quintessence Publishing: Journals: JAD

 

The Journal of Adhesive Dentistry

Edited by Prof. Dr. Roland Frankenberger, Prof. Bart Van Meerbeek

ISSN (print) 1461-5185 • ISSN (online) 1757-9988

Publication:

July/August 2020
Volume 22 , Issue 4



Pages: 399–407
DOI: 10.3290/j.jad.a44871
Back
Share Abstract:

Chemical, Mechanical and Biological Properties of an Adhesive Resin with Alkyl Trimethyl Ammonium Bromide-loaded Halloysite Nanotubes

Isadora Martini Garcia / Vicente Castelo Branco Leitune / Rodrigo Alex Arthur / Julia Nunes / Fernanda Visioli / Massimo Giovarruscio / Salvatore Sauro / Fabrício Mezzomo Collares

Purpose: The aim of this study was to evaluate the chemomechanical properties, antibacterial activity, and cytotoxicity of an experimental adhesive resin containing halloysite nanotubes (HNT), doped with alkyl trimethyl ammonium bromide (ATAB).

Materials and Methods: A filler of HNT doped with ATAB was obtained (ATAB:HNT) and incorporated (5 wt%) into a resin blend made of bisphenol A glycerolate dimethacrylate, 2-hydroxyethyl methacrylate and a photoinitiator/co-initiator system (GATAB:HNT). The same resin blend without ATAB:HNT was used as control (Ctrl). The ATAB:HNT filler was assessed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The two tested adhesives were evaluated for degree of conversion (DC) in vitro and in situ, softening in alcohol, dentin microtensile bond strength (µTBS), antibacterial activity, and cytotoxicity (n = 5).

Results: SEM showed that the nanotubes had a characteristic tubular-needle morphology, while the TEM analysis confirmed the presence of ATAB inside the lumens of HNT. The incorporation of ATAB:HNT induced no reduction (p > 0.05) of the DC either in situ or in vitro. No difference was encountered after the softening challenge test (p > 0.05) and no difference was found in µTBS between the two adhesives, both at 24 h (p > 0.05) and after 6 months of storage in distilled water (p > 0.05). However, ATAB:HNT reduced Streptococcus mutans viability (p < 0.05) without a cytotoxic effect on pulp cells (p > 0.05).

Conclusions: GATAB:HNT adhesive demonstrated appropriate polymerization without significant differences in softening after solvent immersion, while concomitantly maintaining reliable bond strength after 6 months of water aging. Moreover, the ATAB:HNT filler can provide antibacterial activity to the adhesive resin without affecting pulp cell viability.

Full Text PDF File | Order Article

 

 
  © 2020 Quintessence Publishing Co Inc
 

Home | Subscription Services | Books | Journals | Multimedia | Events | Blog
Terms of Use | Privacy Policy | About Us | Contact Us | Advertising | Help | Sitemap | Catalog