Home Subscription Services
 
   

 
The Journal of Adhesive Dentistry
JAD Home Page
About the Editor
Editorial Board
Submit
Author Guidelines
Submission Form
Reprints / Articles
Permissions
Advertising
Advertising
MEDLINE Search
 
 
 
 
 
FacebookTwitter
Quintessence Publishing: Journals: JAD

 

The Journal of Adhesive Dentistry

Edited by Prof. Dr. Roland Frankenberger, Prof. Bart Van Meerbeek

ISSN (print) 1461-5185 • ISSN (online) 1757-9988

Publication:

March/April 2019
Volume 21 , Issue 2



Pages: 107116
DOI: 10.3290/j.jad.a42361
Back
Share Abstract:

Chemical Bonding to Novel Translucent Zirconias: A Mechanical and Molecular Investigation

Sebastian Franco-Tabares / Victoria Franke Stenport / Lars Hjalmarsson / Pui Lam Tam / Carina B. Johansson

Purpose: To investigate direct bonding of a 10-MDP-based cement to two novel translucent yttria-stabilized tetragonal zirconia polycrystal ceramics (4Y-TZP, 5Y-TZP) and observe the influence of thermocycling on this bonding.

Materials and Methods: Powders of presintered and isostatically pressed 5Y-TZP, 4Y-TZP and 3Y-TZP were mixed with a 10-MDP-based cement (Panavia F 2.0), then stored in deionized water for 48 h at 37C or thermocycled 10,000 times. Raman spectroscopy and Fourier-transform infrared spectroscopy were used to assess the presence of a functional group (PO32-) that could indicate bonding before and after thermocycling. X-ray photoelectron spectroscopy was used to identify the presence of the suspected Zr-O-P bond in the same specimens. A shear-bond strength (SBS) test was conducted based on ISO 29022:2013.

Results: Marked peaks assigned to the asymmetric vibrations of the PO32- functional group were observed in both zirconias before and after thermocycling. The binding energy corresponding to Zr-O-P interactions (531.5 eV) was masked by the aluminosilicate in the filler of the cement. Shear bond strengths were approximately 20 MPa after water storage and approximately 6 MPa after thermocycling. No differences were found between the control group and the translucent zirconias.

Conclusion: Direct bonding of the 10-MDP-based cement to both 4Y-TZP and 5Y-TZP was highly plausible. Both 4Y-TZP and 5Y-TZP may be promising alternatives to glass-ceramic restorations.

Full Text PDF File | Order Article

 

 
  © 2021 Quintessence Publishing Co Inc
 

Home | Subscription Services | Books | Journals | Multimedia | Events | Blog
Terms of Use | Privacy Policy | About Us | Contact Us | Advertising | Help | Sitemap | Catalog