Home Subscription Services
 
   

 
The Journal of Adhesive Dentistry
JAD Home Page
About the Editor
Editorial Board
Submit
Author Guidelines
Submission Form
Reprints / Articles
Permissions
Advertising
Advertising
MEDLINE Search
 
 
 
 
 
FacebookTwitter
Quintessence Publishing: Journals: JAD

 

The Journal of Adhesive Dentistry

Edited by Prof. Dr. Roland Frankenberger, Prof. Bart Van Meerbeek

ISSN (print) 1461-5185 • ISSN (online) 1757-9988

Publication:

September/October 2018
Volume 20 , Issue 5



Pages: 417424
DOI: 10.3290/j.jad.a41308
Back
Share Abstract:

Creep Behavior of Resin Composite Interface Between Orthodontic Brackets and Enamel

Bangalore H. Durgesh / Abdulaziz A. Alkheraif / Abobaker Salem Musaibah / Moshabab A. Asiry / Juha Varrela / Pekka K. Vallittu

Purpose: The present study investigated the creep of adhesive resin under constant loading at the orthodontic bracket/enamel interface with an orthodontic bracket-tooth model (shear creep) and three-point bending test (bending creep).

Materials and Methods: For the bracket-tooth model, sixty premolars were assigned to 4 groups (n = 15). Orthodontic brackets were bonded onto the enamel surface using four different bonding agents: conventional, homogeneous Transbond XT orthodontic composite (group 1/TBC); Transbond XT composite reinforced with photopolymerized glass-fiber-reinforced composite (FRC with bidirectional fibers) (group 2/TBE); Transbond XT reinforced with FRC of vertically oriented unidirectional fibers (group 3/TBV); and Transbond XT reinforced with FRC of horizontally oriented fibers (group 4/TBH). Load was applied at the bracket/tooth interface and from the bracket wire slot. In the three-point bending test, the creep and recovery of the rectangular interface materials were tested by a dynamic mechanical analyzer. The data obtained were statistically analyzed with ANOVA and a post-hoc test using SPSS v20 statistical software.

Results: The groups exhibited significant differences in strain % and time for bracket deflection at the interface (p < 0.05). The interface loading with unidirectional fibers (groups TBV and TBH) were statistically significantly different compared to the interface with bidirectional fibers and control group (groups TBE and TBC). The three-point test showed the least creep compliance (ie, creep deformation occurring at each time point [J]) with group TBC, followed by groups TBV and TBE. Group TBC showed the highest nanohardness and elastic modulus; the lowest values were seen in group TBE, reflecting differences in polymer matrix composition.

Conclusion: The creep and time for debonding the bracket increased with incorporation of glass fibers at the interface between bracket and enamel.

Full Text PDF File | Order Article

 

 
  © 2021 Quintessence Publishing Co Inc
 

Home | Subscription Services | Books | Journals | Multimedia | Events | Blog
Terms of Use | Privacy Policy | About Us | Contact Us | Advertising | Help | Sitemap | Catalog