Home Subscription Services
 
   

 
The Journal of Adhesive Dentistry
JAD Home Page
About the Editor
Editorial Board
Submit
Author Guidelines
Submission Form
Reprints / Articles
Permissions
Advertising
Advertising
MEDLINE Search
 
 
 
 
 
FacebookTwitter
Quintessence Publishing: Journals: JAD

 

The Journal of Adhesive Dentistry

Edited by Prof. Dr. Roland Frankenberger, Prof. Bart Van Meerbeek

ISSN (print) 1461-5185 • ISSN (online) 1757-9988

Publication:

July/August 2015
Volume 17 , Issue 4



Pages: 353-359
PMID: 26295067
DOI: 10.3290/j.jad.a34593
Back
Share Abstract:

Effect of Adhesive Resin Type for Bonding to Zirconia Using Two Surface Pretreatments

Samimi, Pouran / Hasankhani, Amineh / Matinlinna, Jukka Pekka / Mirmohammadi, Hesam

Purpose: This laboratory study evaluated the short-term adhesive properties of one 10-MDP-containing and two MDP-free resin composite cements, using two types of zirconia surface pretreatments.
Materials and Methods: Eighteen sintered zirconia disks (Procera, Nobel Biocare) were randomly divided into three study groups according to their surface treatment: (a) polished surface (control group); (b) airborne-particle abraded (grit blasted) with 50-μm aluminum trioxide (APA); and (c) selective infiltration etching (SIE). The zirconia disks were then bonded to 180 pre-aged composite resin disks (0.9 mm × 0.7 mm) using three different resin composite cements (Panavia F2.0, Esthetic, and Aegis). Resin-zirconia adhesion strength was evaluated using the microshear bond strength test (μSBS) after 24 h (baseline) and 2 weeks of storage in deionized water at 37°C. Three-way ANOVA, one-way ANOVA, and Scheffé’s post-hoc tests were used to analyze the data (p = 0.05).
Results: Surface treatments significantly influenced the μSBS (p < 0.001). The highest mean μSBS values were recorded with the MDP-containing resin composite cement (Panavia F2.0) in both SIE (32.4 ± 5.3 MPa) and APA (28.6 ± 8.8 MPa) groups. Water storage significantly reduced the bond strength obtained with the MDP-free cements (Esthetic and Aegis) and in the control group, while the bond strength in SIE and APA groups using the 10- MDP-containing resin composite cement exhibited relatively unchanged values.
Conclusion: SIE and APA in combination with the 10-MDP-containing resin composite cement established a strong, durable bond to zirconia substrates under short-term aging conditions. The cement containing amorphous calcium phosphate (Aegis) did not bond to zirconia surfaces. During the observation period, μSBS decreased significantly due to hydrolytic degradation, except when the 10-MDP-containing resin composite cement (Panavia F2.0) was used in the SIE and APA groups.

Keywords: adhesive strength, microshear bond strength, resin composite cement, surface treatment, zirconia, MDP monomer

Full Text PDF File | Order Article

 

 
  © 2022 Quintessence Publishing Co Inc
 

Home | Subscription Services | Books | Journals | Multimedia | Events | Blog
Terms of Use | Privacy Policy | About Us | Contact Us | Advertising | Help | Sitemap | Catalog