LOGIN
 
Share Page:
Back

Volume 33 , Issue 5
September/October 2020

Pages 546–552


Temporary Implant-Supported Single Crowns Using Titanium Base Abutments: An In Vitro Study on Bonding Stability and Pull-out Forces

João Pitta, Dr Med Dent, MAS/Jasmina Bijelic-Donova, CDT, DDS, PhD/Felix Burkhardt, Med Dent/Vincent Fehmer, MDT/Timo Närhi, DDS, PhD, Prof/Irena Sailer, Prof Dr Med Dent


PMID: 32956436
DOI: 10.11607/ijp.6778

Purpose: To evaluate the effect of cementation protocols on the bonding interface stability and pull-out forces of temporary implant-supported crowns bonded on a titanium base abutment (TiB) or on a temporary titanium abutment (TiA). Materials and Methods: A total of 60 implants were restored with PMMA-based CAD/CAM crowns. Five groups (n = 12) were created: Group 1 = TiB/SRc: crown conditioned with MMA-based liquid (SR Connect, Ivoclar Vivadent); Group 2 = TiB/50Al-MB: crown airborne particle–abraded with 50-μm Al2O3 and silanized (Monobond Plus, Ivoclar Vivadent); Group 3 = TiB/30SiOAl-SRc: crown airborne particle–abraded with 30-μm silica-coated Al2O3 (CoJet, 3M ESPE) and conditioned with MMA-based liquid (SR Connect); Group 4 = TiB/30SiOAl-MB: crown airborne particle–abraded with 30- μm silica-coated Al2O3 (CoJet) and silanized (Monobond Plus); and Group 5 = TiA/TA-PMMA: crown manually enlarged, activated, and rebased with PMMA resin (Telio Lab, Ivoclar Vivadent). Specimens in the TiB groups were cemented using a resin cement (Multilink Hybrid Abutment, Ivoclar Vivadent). After aging (120,000 cycles, 49 N, 1.67 Hz, 5°C to 55°C, 120 seconds), bonding interface failure was analyzed (50x). Pull-out forces (N) (0.5 mm/minute) and modes of failure were registered. Chi-square and Kruskal-Wallis tests were used to analyze the data (α = .05). Results: Bonding failure after aging varied from 0% (Group 5) to 100% (Groups 1, 2, and 4) (P < .001). Mean pull-out force ranged between 53.1 N (Group 1) and 1,146.5 N (Group 5). The pull-off forces were significantly greater for Group 5 (P < .05), followed by Group 3 (P < .05), whereas the differences among the remaining groups were not significant (P > .05). Conclusion: The cementation protocol had an effect on the bonding interface stability and pull-out forces of PMMA-based crowns bonded on a titanium base. Airborne particle abrasion of the crown internal surface and conditioning it with an MMA-based liquid may be recommended to improve retention of titanium base temporary restorations. Yet, for optimal outcomes, conventional temporary abutments might be preferred.


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2020 Quintessence Publishing Co, Inc

IJP Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help