LOGIN
 
Share Page:
Back

Ahead of Print


Influence of cyclic loading on load-to-failure of different ceramic CAD-CAM implant-supported single crowns

Burak Yilmaz DDS PhD/Amani Alsaery DDS MS/Luke Bowen BS/Samir Abou-Ayash Dr. med. Dent./Robert Seghi DDS MS


DOI: 10.11607/ijp.6510

Purpose: To compare the load to failure values of different ceramic CAD/CAM implant crown materials with drilled screw access holes with and without cyclic loading applied. Materials and Methods: Forty zirconia abutments with a titanium base were pre-loaded onto implants to support maxillary right first premolar crowns that were milled from four different CAD/CAM ceramic materials (zirconia reinforced lithium silicate, hybrid ceramic, lithium disilicate, and zirconia; n = 10 each). After cementing the crowns, screw access channels were prepared by drilling through occlusal surfaces. Half of the specimens were subjected to cyclic loading for 5 million cycles at 2 Hz (n = 5/material). After cyclic loading, vertical loads were applied to failure, and the load to failure values of all crowns were recorded and statistically analyzed. Two-way analysis of variance was used with restricted maximum likelihood estimation and Tukey-Kramer adjustments (α = .05). Results: During cyclic loading, the zirconia abutment in one lithium disilicate specimen cracked at 2 million cycles, as well as a zirconia-reinforced lithium silicate crown. Results for the load to failure test series showed statistical differences between the materials. Zirconia resulted in significantly higher failure loads when compared to the other materials (P < .001). Cyclic loading did not significantly affect the load to failure values. Conclusion: Cyclic loading did not significantly influence the load to failure of any of the materials tested. Zirconia crowns with drilled screw access channels cemented on zirconia abutments with a titanium base had higher load to failure values compared to the other ceramic crown materials.


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2020 Quintessence Publishing Co, Inc

IJP Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help