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Foreword

The use of platelet-rich fibrin (PRF) has seen a rapid increase over the past 
decade, owing to its ability to rapidly release autologous growth factors 

harvested quite easily from peripheral blood. While original case studies dating 
back nearly two decades focused primarily on its use in medicine for the treat-
ment of hard-to-heal wound ulcers, it is now well known that its inclusion of high 
concentrations of platelets and leukocytes has served several benefits in dentistry. 
Specifically, platelets are largely responsible for the release of various regenerative 
growth factors favoring wound healing, whereas leukocytes (white blood cells) 
participate in host defense against incoming pathogens. The ability to concentrate 
both cell types found within PRF has shown pronounced benefits in the oral cavity, 
an area particularly concentrated with various oral bacteria.

Over the years, several research articles focused on the use of PRF for multiple 
applications in regenerative dentistry; more recently, publications have begun to 
emerge dealing specifically with its use in endodontics. I have the great pleasure 
to announce the launch of this new book, PRF Applications in Endodontics, which 
addresses this topic in extensive detail.

The book begins by providing background knowledge on various cell types 
found in regenerative medicine with particular focus on stem cells. Thereafter, 
the book rapidly enters into a variety of chapters dedicated to PRF with a brief 
history regarding its scientific background, including growth factors, armamen-
tarium, and protocols utilized to fabricate PRF. The discussion then transitions to 
nonsurgical applications in regenerative endodontics, as well as its use in dentistry, 
particularly for the formation of a bone grafting material complex including bone 
grafting particles and autologous PRF (aka “sticky bone”). Its use as an alternative 
to bone grafts and other biomaterials is further discussed in later chapters dealing 
with endodontic surgery. These include various endodontic procedures indicated 
following common human “accidents” (accidental tooth loss and replantation, 
for instance), for improvements in furcation-involved teeth as a result of iatro-
genic procedures, for root-end resection procedures, and for the management 
of surgical cysts.
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This textbook is for both the beginner as well as the advanced endodontist 
and practicing dentist working in the field of endodontics wishing to further 
improve their practice by adopting some of the latest regenerative protocols. 
It is certainly a first of its kind and a must-read in the field of endodontics, high-
lighting the benefits of autologous blood concentrates specifically dedicated to 
endodontic procedures.

Colleagues will certainly enjoy this read, and it will undoubtedly open many 
avenues of future research on the topic!

	 Richard J. Miron, dds, msc, phd
	 Group Leader, The Miron Research Lab
	 Lead Educator, Advanced PRF Education 
	 Venice, Florida
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Preface

As endodontists and periodontists, we are all familiar with the potential appli-
cations of platelet-rich plasma (PRP) in medicine and dentistry. But in the 

past few years, platelet-rich fibrin (PRF) has emerged as an alternative material 
in its own right. One of our first opportunities to observe the effects of PRF was 
in discussion with colleagues using it in oral surgery procedures. Their patients 
experienced remarkable hard and soft tissue healing with minimal postoperative 
discomfort. Intrigued, we dug further and discovered the widespread applications 
of PRF in dentistry and medicine.

The appeal of PRF stems from the fact that it is made from a patient’s own 
blood. It is easy to prepare and can be used for many kinds of procedures, making 
it cost-effective. PRF has many potential applications in endodontics. It can be 
used in surgical endodontics and adjunctive surgical procedures such as root 
amputation and hemisection. In addition, it can be used for root perforation 
repair, vital pulp therapy, and regenerative endodontics. Furthermore, it can be 
used as a bone graft binder during socket preservation to create “sticky bone” 
for the closure of surgical sites.

When the three of us first met, the idea of sharing these various applications 
of PRF was an immediate common ground. We were working with residents at 
the time and knew how much they could benefit from learning about PRF. After 
using PRF and observing successful outcomes in several cases, we decided to take 
things to the next level. We brought together some of the most forward-thinking 
endodontists, periodontists, oral surgeons, and general practitioners to share 
our thoughts regarding potential use of this material in endodontics and other 
fields of dentistry. 

This book, representing a collaboration of like-minded clinicians, is the first to 
introduce the idea of PRF and cord blood stem cells in endodontics. It contains 
an overview of PRF itself with up-to-date information on tissue regeneration, as 
well as step-by-step instructions on how to use PRF in a variety of endodontic and 
oral surgery procedures. We have been using this knowledge for years to improve 
tissue healing for our patients, and we hope this book will help you on your quest 
to improve healing for your patients. 
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Introduction

Recent studies using novel biomaterial scaffolds that contain host endogenous 
growth factors represent a departure from traditional clinical approaches 

and may result in better and more predictable regenerative solutions in medicine 
and dentistry. As early as 1966, Rule and Winter published a case report regarding 
continued root formation and apical closure in an immature human premolar 
tooth using pulp bleeding as a scaffold. Nygaard-Ostby et al, Nevins et al, Iwaya 
et al, Banchs and Trope, as well as others reported pulp revascularization in teeth 
with necrotic pulps and immature apices that showed continuous root maturation, 
dentinal wall thickening and, in some cases, a positive response to vitality tests. 
In 2011, we reported a case of pulp revascularization using platelet-rich plasma 
(PRP) in a second maxillary premolar with immature root that had been accidently 
extracted and then replanted. After removing the necrotic pulp, irrigating it with 
5.25% sodium hypochlorite, and medicating it with a triple antibiotic paste for 3 
weeks, we prepared PRP from the patient’s blood and injected it into the canal 
space. Mineral trioxide aggregate (MTA) was placed over the clotted PRP and 
double-sealed with Cavit (3M) and amalgam. Radiographic examination of this 
tooth 5.5 months later showed resolution of the periapical lesion, further root 
development, and continued apical closure. Vitality tests elicited positive responses 
like those found in the first premolar tooth. The shortcomings of PRP include 
the need to draw blood from the patient and the complexity of centrifugtion and 
purification in a clinical setting.

Platelet-rich fibrin (PRF) is an autologous product that contains high concentra-
tions of nonactivated, functional intact platelets within a fibrin matrix that release 
a relatively constant concentration of growth factors/cytokines over a few days. 
It is easier to produce but it has to be used immediately after blood drawing and 
centrifugation. PRF is a potential substitute for PRP in regenerative endodontics 
and other regenerative procedures involving reconstruction of hard tissues, such 
as surgical endodontics and adjunctive surgical procedures like root amputation, 
hemisection, and repair of root perforations. 



xiii

The main purpose of PRF Applications in Endodontics is to stimulate research 
in regenerative procedures in endodontics and encourage clinicians to use PRF to 
improve healing of their patients and save natural dentition. The book has seven 
chapters and starts with the history of stem cells in regenerative medicine and 
its possible applications in endodontics, followed by PRF armamentarium and 
description of how to make PRF, use of PRF in nonsurgical endodontic procedures, 
its soft tissue applications, hard tissue applications, surgical endodontics, and 
finally socket preservation. It is assembled by well-known scientists and clinicians 
who are experts in their fields and interested in the use of innovative materials 
and techniques to improve human lives. 

Mahmoud Torabinejad, dmd, msd, phd
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LEARNING OBJECTIVES

• Gain a better understanding of stem cell biology and how it relates
to regenerative medicine, specifically dentistry

• Compare different sources of stem cells and the relative strengths
and weaknesses associated with each source

• Gain a better understanding of a mesenchymal stem cell secretome
and why it is important therapeutically

Stem Cells in Regenerative 
Medicine 
C. CAMERON TAYLOR, PhD
HABIB TORFI, MSE
MOHAMMAD SABETI, DDS, MA

Regenerative medicine, also commonly known as tissue engineering, is a disci-
pline of medicine that is focused on restoring native tissue structure and 

functionality to an afflicted tissue. Dentistry has traditionally been at the forefront 
of regenerative medicine, commonly employing novel bioactive materials to stim-
ulate bone growth and regeneration. Recently, stem cells and other cell-based 
therapies have attracted significant attention in this space due to their ability to 
not only treat patients’ symptoms but to improve physiologic activity and restore 
native tissue structure. 

Stem cells are characterized by a capacity for self-renewal while maintaining an 
undifferentiated state and, given the proper stimulus, the ability to differentiate 
into various types of specialized somatic cells. Stem cells are further classified by 
their relative differentiation potential. Stem cells that can differentiate into any 
cell type in the body are termed totipotent and have the widest differentiation 
potential. Mesenchymal stem cells (MSCs) are multipotent stem cells that are most 
closely associated with the mesodermal lineage and are known to differentiate 
into chondrogenic, osteogenic, myogenic, and adipogenic cell types.1
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The discovery of stem cells and their multipotent potential has encouraged 

the development of the whole field of research, projected to have reached $170 
billion by 2020. In particular, the multipotent MSCs, with their stem-like quality to 
differentiate into mesodermal cell types, have been a focus. Indeed, overall revenue 
for MSC products was projected to be $10.9 billion from 2010 to 2020. Alongside 
the possibilities of therapeutic successes (ranging from treating graft-versus-host 
disease, Crohn disease, spinal cord injury, and use in support of hematopoietic 
stem cell treatments) comes the inherent ethical and logistic dilemmas behind 
obtaining stem cells. This chapter focuses on MSCs due to their popularity for 
regenerative applications. 

Mesenchymal Stem Cells

Stem cell sources
First isolated in bone marrow, bone marrow–derived MSCs were found to be 
precursors to multiple cell types and could be viably cultured while retaining their 
capacity for multilineage differentiation. Obtained from an invasive bone marrow 
harvesting procedure, bone marrow–derived MSCs avoid the ethical concerns as 
well as tumorigenicity of embryonic stem cells and have subsequently been used 
in a nearly exponential increase in research studies and trials.2 Unfortunately, 
bone marrow–derived MSCs are relatively low yield and limited to autologous use, 
requiring in vitro expansion that increases the risk of contamination. Additionally, 
harvesting the cells requires a surgical procedure with associated donor morbidity 
and risk, and the potency (ie, “stemness”) has been questioned when compared 
with more recently discovered sources of MSCs.3

One of these sources is umbilical cord blood (also known as cord blood), 
collected via venipuncture of the typically discarded umbilical cord. Painless and 
without morbidity, cord blood is considered superior to human bone marrow stem 
cells in its harvesting and yield. Cord blood is cryopreserved in two main methods 
using dimethyl sulfoxide (DMSO): (1) red cell reduction, which is less expensive to 
store and easier to defrost; and (2) plasma depletion, which is more economical 
to process. Public cord blood banks cost about $1,500 to $2,500 per unit stored, 
while private banks typically charge an initial processing fee of $1,400 to $2,300 
plus annual storage costs of $115 to $150. However, MSCs only represent a small 
proportion—1,000 to 5,000 MSCs in one 100-mL unit of cord blood—of the cell 
types within cord blood, which includes hematopoietic cell types, endothelial and 
progenitor cells, as well as MSCs.4
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There has also been recent attention toward Wharton’s jelly (WJ) within umbil-
ical cords. WJ was found at the turn of the century to contain a multipotent, 
fibroblast-like MSC population with greater multipotent potency, faster prolifera-
tion, and longer life spans than adult bone marrow–derived MSCs.3 This is a result 
of reduced telomere length. Telomeres shorten with age, eventually resulting in 
cellular senescence. MSCs isolated from cord blood are much younger than adult 
MSCs and possess significantly longer telomeres.5 

MSCs in WJ are an entity apart from cord blood MSCs and endothelial cells from 
the umbilical vein. The plentiful presence of MSCs in WJ is theorized to either be 
due to the trapping and retaining of fetal MSCs during the two waves of migration 
of fetal MSCs in early development or to the fact that the cells in WJ are actually 
primitive MSCs that originate from mesenchyme already present in the umbilical 
cord matrix. More research has been focused on not only the characterization 
and usage of these WJ-derived MSCs, but also on discrete differences of the stem 
cell populations depending on the anatomical region of the WJ.6 

The most recent development is that what was once thought to be a single 
mass providing uniform MSCs is actually more anatomically distinct. There are six 
different zones of the cord with cells in various stages of differentiation: (1) the 
surface (amniotic) epithelium, (2) subamniotic stroma, (3) clefts, (4) intervas-
cular stroma, (5) perivascular stroma, and (6) vessels. However, the descriptors 
separating these zones are not clear. It is thought that WJ is composed mainly of 
perivascular progenitors but may possibly include nonperivascular progenitors as 
they move away from the vasculature.6 In addition to the anatomical differences, 
there is concern that the MSCs may differ lengthwise and that the mother end of 
the umbilical cord may have different mesenchymal features than the fetus end 
of the umbilical cord.7 

In addition to harvesting and potency advantages, cord blood and WJ-derived 
MSCs are also not limited to autologous use. Due to their excellent immunomod-
ulatory properties and universally tolerated surface marker profiles, MSCs isolated 
from cord blood and WJ can be made available to patients as allografts.8,9 Using 
cells isolated from birth tissue as “off-the-shelf” allografts greatly simplifies the 
manufacturing process of MSCs for therapeutic use, providing a standardized, 
scalable method of producing cells that does not need to be personalized for 
each patient. 

Importance of the secretome
The therapeutic effectiveness of MSCs is well documented, especially as it pertains 
to wound healing. However, the mechanisms of action are not well understood. 
Stem cells are partially defined as cells that are capable of differentiation into a 
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variety of specialized somatic cells, and this knowledge has fueled speculation that 
cell differentiation upon engraftment is responsible for the observed therapeutic 
effects. On further investigation, it would appear that this is not the case.

Recent research has shown that MSCs introduced therapeutically primarily 
function through trophic and immunomodulatory signaling pathways, and the 
stem and progenitor cells of the host actually do most of the work.10 This is why 
the secretome, or the collection of bioactive molecules secreted from the cells, 
has been receiving more attention from researchers. Rich in growth factors and 
cytokines that are associated with modulating inflammation and promoting angio-
genesis, the MSC secretome seems perfectly suited to enhance wound healing. 
This is evidenced in human physiology by the ability of MSCs to zero in on areas 
of inflammation and injury and secrete bioactive factors.11 

The regenerative effects of growth factors and cytokines have been well docu-
mented in dentistry. Peptides in the transforming growth factor β (TGF-β), bone 
morphogenetic protein (BMP), fibroblast growth factor (FGF), and interleukin 
(IL) families are crucial components driving regeneration, especially as it relates 
to bone growth.12 These factors stimulate host cells in regenerative pathways, but 
it can be challenging to maintain dosing and ensure efficient cell uptake of these 
factors therapeutically. The MSC secretome is rich in many of these peptides, 
suggesting that the secretome could be responsible for some of the observed 
therapeutic effects.13 

Stem Cells in Regenerative Endodontics
The potential utility of cord blood MSCs has not yet been fully realized in the 
relatively new field of regenerative endodontics. Since its development in 
2004 by Banchs and Trope, regenerative endodontics has been employed as a 
root-preserving alternative to a root canal, utilized to eradicate pulp infections in 
immature permanent teeth, thus permitting further root development and preser-
vation of teeth in patients who are still growing.14 Liao et al15 revealed the presence 
of osteogenic MSCs in both inflamed pulp tissue and inflamed periapical tissues, 
and further investigation by Chrepa et al16 revealed that the evoked bleeding step 
demonstrated an increase in local accumulation of undifferentiated MSCs even 
in a mature tooth. Because of these revelations, the recommended American 
Association of Endodontists protocol was revised to use irrigants that are less 
toxic to stem cells and propose the use of platelet-rich plasma, platelet-rich fibrin, 
and autologous fibrin matrix in place of the simple blood clot. 

However, there is no evidence in the literature of regeneration of the dentin 
pulp complex. The effect of noninflamed apical residual tissue in regeneration 
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of pulp has been investigated recently in an animal model. Torabinejad et al17 
conducted a study providing evidence that noninflamed apical residual pulp has 
the capability to regenerate the normal pulp. Given the discovery of the presence 
of stem cells involved in the restoration of the root, studies are now underway to 
assess if implantation of stem cells may in fact accelerate pulp tissue regeneration 
and healing and perhaps shorten the wait time. Tissue engineering permitted 
two strategies: (1) the direct implantation of freshly isolated stem cells with or 
without biodegradable scaffolds, and (2) implantation of preassembled tissue 
constructs containing in vitro cultured cells in the scaffold.18 Studies showed that 
the implantation of stem/progenitor cells isolated from a human root in a mouse 
model resulted in formation of a pulp-like tissue with a layer of dentin-like tissue 
along the canal wall.19 

Unfortunately, retrieval of autologous dental stem cells is difficult, especially 
in the common case where all other teeth are healthy. It is even more difficult 
to obtain one of the five subtypes of dental stem cells: (1) dental pulp stem cells 
(DPSCs), (2) stem cells from human exfoliated deciduous teeth (SHEDs), (3) stem 
cells from apical papilla (SCAPs), (4) periodontal ligament stem cells (PDLSCs), 
and (5) tooth germ progenitor cells (TGPCs).20

As such, recent efforts have investigated the use of MSCs derived from other 
origins, such as human bone marrow–derived MSCs, which have potential for 
osteogenesis as a more multipotent stem cell than the differentiated dental stem 
cells. However, bone marrow–derived MSCs are associated with risks, mortality, and 
high cost of bone marrow harvesting and processing. Induced pluripotent stem 
cells have also been investigated,21,22 which studies show contribute to mesenchymal 
progenitors to create early cells in the osteogenic lineage. Unfortunately, the study 
by Sueyama et al23 using a rat model found that implanting MSCs alone showed 
incomplete dentin bridges, while coimplantation of MSCs with endothelial cells 
resulted in pulp healing with complete dentin bridge formation.

As such, a viable strategy to allow osteogenic regeneration involves the use of 
cord blood MSCs. This avoids the ethical concerns of embryonic stem cells and 
the morbidity of bone marrow acquisition while retaining the multipotency required 
for the regeneration of complex endodontic tissue. In 2018, Chen et al24 showed 
that MSCs derived from cord blood were able to achieve successful osteogenic and 
angiogenic properties, in addition to density, when cocultured with human umbilical 
vein endothelial cells. These cord blood MSCs had similar capabilities and perfor-
mance as human bone marrow–derived MSCs and human embryonic stem cells.24

Currently, the literature does not indicate any effect of cord blood stem cells 
used in combination with residual dental pulp tissue on the ability of a tooth to 
regenerate pulpal tissues. The authors propose that cord blood stem cells will 
enhance the ability of residual pulp tissue to regenerate. 



6

STEM CELLS IN REGENERATIVE MEDICINE1

MSC Isolation Methods
Cord blood–derived and WJ-derived MSCs are an excellent option for therapeutic 
use because they are easily collected, readily available, and highly proliferative. 
They can also be used as allografts. Procedures used to isolate MSCs from these 
sources are described in the following sections. 

Cord blood
Cord blood is collected from eligible donors at the time of delivery and transported 
to the processing facility on ice (2°C to 8°C) in a blood bag. Upon arrival, the blood 
is processed immediately under aseptic conditions (Fig 1-1a). 

The blood bag is first drained into conical tubes and centrifuged at 1500 × g 
to separate components. This results in distinct layers in the conical tube, with 
plasma rising to the top and red blood cells forming a pellet at the bottom of the 
tube. There is also a distinct buffy coat layer below the plasma that contains the 
cells of interest. The buffy coat layer is then collected and diluted with a phosphate-
buffered saline (PBS) solution before undergoing density gradient centrifugation. 
The buffy coat and PBS mixture is added to Ficoll-Paque (GE Healthcare) density 
gradient media and then centrifuged at 409g. This results in an isolation of periph-
eral blood mononucleated cells (PBMCs) in the resulting buffy coat (Fig 1-1b). 

FIG 1-1  The different stages of cord blood processing. (a) Blood bag as it was received being processed 
under aseptic conditions. (b) Conical tube after centrifugation. Note plasma layer (top), buffy coat 
layer (middle), and red blood cells (bottom). (c) PBMCs suspended in Stem-Cellbanker ready for 
storage in a cryovial.

a b c
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The PBMCs are then collected and diluted once again with PBS before being 
centrifuged at 409 × g. This wash step is repeated until the resulting superna-
tant is no longer cloudy or hazy, and the resulting pellet is then resuspended in 
Stem-Cellbanker (Amsbio). Cell count, viability, and surface marker profile are then 
tested using flow cytometry. This information is used to aliquot the appropriate 
cell number into cryovials, and the cells are immediately stored at –80°C (Fig 1-1c). 

Wharton’s jelly 

Umbilical cords are collected from eligible donors at the time of delivery and 
transported to the processing facility on ice (2°C to 8°C) in Dulbecco’s Modified 
Eagle Media (DMEM). Cords are processed immediately under aseptic conditions, 
and MSCs are collected for culture according to the procedure described below. 

To start a primary explant culture, a roughly 1 × 1–cm segment of cord is obtained 
using sterile forceps and scalpel. This segment is dissected to remove blood vessels 
and isolate the WJ. The resulting segments of WJ are then added to 10 mL of a 
collagenase-DMEM solution and incubated at 37°C for 4 hours. The collagenase-
DMEM solution is prepared to a strength of 300 collagenase degrading units 
(CDU) per mL. Digested pieces of tissue are then collected using sterile forceps 
and transferred to a T-25 flask containing 10 mL of MSC-Brew Xeno-Free Media 
(Miltenyi Biotec). Cultures are then incubated for 72 hours at 37°C, at which point 
the media is replaced and the pieces of tissue are removed from the flask. 

Once the primary culture has been established, regular media changes occur 
every 2 to 3 days, and cells are allowed to grow to 80% to 90% confluency. At this 
point, cells are passaged using trypsin-EDTA solution (0.25%) and reseeded into a 
T-75 flask. The culture is maintained this way until the target number of cells has 
been reached, at which point passaged cells are suspended in Stem-Cellbanker 
and frozen at –80°C. 
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